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L Cryptography

Context

Cryptography has been used for a long time for confidentiality
purposes

m Mobile phones e’:

m Banks

v

m Cars
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Side channel attacks

Reduction in cryptography security in real situation
Possibility to find the secret key when we focalize on a side channel

m Timing attack (Kocher - 1996)
m Electromagnetic attack (Gandolfi, Mourtel & Olivier - 2001)
m Power monitoring attack (Kocher, Jaffe & Jun - 1999)
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Power monitoring attack
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EM leakage
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[1] MARTINASEK, Z., ZEMAN, V., TRASY, K.. Simple Electromagnetic Analysis in Cryptography.
International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems, North
America, 1, sep. 2012.
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Non-profiling attacks

m f is the target function (e.g. SBox) using P and Q
m L is the leakage model (e.g. HW)
m D is the distinguisher (e.g. Pearson correlation)

A

Q:argrgeaé |D(L(f(P,@)),T) |
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Profiling attacks

A

Q =argmaxP(Q|T)
Q

0 — P(TIQ)xP(Q)
Q= argcr)nax P(T)

Q= arg maxﬁ’(T|Q) X :E’(Q)
Q

How to estimate P(T|Q)?
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Profiling attacks

m Parametric methods

m TA (i.e. P(T|Qi) ~ N(pi,%;) ) Is. Chari et al. 2002]
m SA (i.e. P(T|Qi) ~ N(pi,X) ) (w. Schindler et al. 2005]

u Non—parametric methods [L. Lerman et al. 2011 & 2013, G. Hospodar et al. 2011,
A. Heuser et al. 2012, T. Bartkewitz et al. 2012]

m SVM
m RF
= KNN

m Results in unprotected contexts

m A ML model is as efficient (and often better) than TA

L. LERMAN, S. FERNANDES MEDEIROS, G. BONTEMPI, and O. MARKOWITCH



A machine learning approach against a masked AES

L_Side channel attacks

Countermeasures

m Several countermeasures

m Masking
m Hiding

m Several algorithms of masking schemes

m Boolean, multiplicative, affine masking schemes
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ISPES

Are the results of the previous ML works still the same in a
protected environment?

How many traces are required

against a protected device with a ML model compared to a
strategy based on TA or SA?

by a ML model attacking a protected device compared to an
unprotected device?

What is the impact of the number of traces used in the
profiling step by a ML model attacking a protected device?
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Framework

(1) PRELIMINARY PHASE (2) PROFILING PHASE

i
| Cryptographic Device . -

i

! | Implementation Data Collection Pre-Processing

i

Profiled Model Selection

_______________________________________________ .
Non-Profiled Attack |_Mask value [ profileq Model | |
(e.g- SVM, TA, SA) | |

)

(e.g. CPA, KS, MIA)
(4) POST-ATTACKING PHASE (3) ATTACKING PHASE

Lower the error between the correct and the estimated mask values,
higher the correlation between the real and the predicted traces for
the correct key
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L Experiments

Target

m AES-128 protected by the Rotating Sbox (Boolean) Masking
scheme (based on table look-up)

m Atmel ATMega-163 smart card
m According to its authors (in a hardware context):

m Performances and complexity close to unprotected scheme
m Resistant against several side-channel attacks
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L Experiments

Models

m Profiling attacks

TA
SA
SVM
RF

m Non-profiling attack
m CPA on HW(maskedSBox(plaintext ¢ mask @ key))
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Dataset
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Public dataset of the DPAContest V4 (updated in October)
Electromagnetic emission leakages

First round of AES

Each trace has 435,002 samples
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Finding the offset value on traces

p(+ T, offset) on 1500 traces

correlation
S5 o
°

0 B0 160 240 320 400 480 560 640 720 800 880

time (in micro-second)

Feature selection step:
50 instants highest linearly correlated with the offset value
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Model estimation

Learning set § Validation set
1500 traces 1500 traces
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Model selection results

m Higher the number of traces in the learning set, higher the
accuracy
m Higher the number of features, higher the success rates for
SVM, RF and SA (except TA)
m The success rates of
m ML models

= SVM: 0.88
m RF:0.81

m SA: 0.90
m TA: 0.66
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Attacking step

m Unmasked implementation

200 m CPA: 16.3 traces in
| Minimum number of traces .

ot average (5s)

120 m Masked implementation

125

m SVM / CPA: 26 traces
in average (20s)

” m SA / CPA: 27.8 traces in
. average (80s)
» D iﬂ iﬂ m TA / CPA: 56.4 traces in

100

number of traces.

- average (45s)

N m SA: 107 traces in
Unprotected Protected device average (1805)
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Discussion & Conclusion

(Unprotected) implementation of the Rotating Sbox Masking
m 26 traces with 20s during the attacking phase

ML approach outperforms TA in data complexity

Original SA is less efficient than the new strategy based on SA

SVM outperforms SA in time complexity

How to improve the attack ?

m Increasing the number of points selected in each trace
m Optimizing the model’s parameters
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Last but not least ...

Official result in the DPAContest V4 :
22 traces with 0.528 seconds

in order to retrieve the secret key of AES-128
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